
Lecture 15 - 3/5/2024
----------------------
Today is the day we learn about arrays, and by the end of
lecture you will be fully equipped to understand the following
line:

public static void main(String[] args)

We begin with a discussion on what types you can put in an array,
which is any type that you have in java. Arrays are also homogenous,
meaning all the types contained within have to be the same. Arrays
are also immutable like Strings, you can change the contents of an
array however you want.

Think of it like this, treat an array like a bookshelf, you can
change the things on the bookshelf without changing the bookshelf
itself.

Consider the following ways to instantiate an array:

1. int[] numbers = {1,2,3,4};
2. int[] numbers = new int[]{1,2,3,4};
3. int[] numbers = new int[4];

The first 2 ways provide default values while the last way does not
have any predefined values from the user. Arrays do have default
values associated with their positions based on the type, for
integral values it’s 0. For objects it’s null, for floating points
it's 0.0, for chars it's the null character, and for booleans it's
false.

Now we can go back to args, which is just an array of Strings. We
enter the values into args at the command line. Consider the
following terminal lines (from codio lecture 15):

javac ArgsStrings.java
java ArgsStrings Happy Days are Here!

Clicking enter would run the ArgsStrings class’s main method which
prints out all of the values of args.



Lecture 16 - 3/7/2024
----------------------
We began exploring a new archetype in lecture, now we have AudioBook
along with BankAccount. We use AudioBook and AudioBookCollection to
demonstrate different functionalities in Java primarily with arrays.
We discussed further about what it means for an object reference to
be pointing at something. Consider the following example:

private void increaseSize() {
AudioBook[] temp = new AudioBook[collection.length * 2];

for(int i = 0; i < collection.length; i++)
temp[i] = collection[i];

collection = temp;
}

What this method does is copy over the contents of collection to a
new array called temp. We then change collection reference to now
point to where temp points.

We start with a single array object - collection - and within it are
100 object references to null. Whenever we add an AudioBook we
replace one of those references to null with a reference to an
AudioBook.

In this method, we make a new variable called temp of type
AudioBook[] which will have a length twice the size of the current
collection array. Then we loop through our collection and assign each
of the first collection.length slots of temp to the preexisting
AudioBook references in collection. The rest will remain null.
Finally we make collection point to this new expanded array temp.

You were also taught about the Comparable Interface, which allows us
to compare AudioBooks to one another. An interface acts as a contract
in Java stating that you will provide an implementation of any method
that is in the interface. For Comparable this is the compareTo
method.

When given a.compareTo(b):

- We return -1 if a < b (a comes before b)
- We return 1 if a > b (a comes after b)



- We return 0 if a == b (a and b are the same)

This allows us to write sorting algorithms/sort custom objects that
we write.


